Radium-228 separation and thorium-229 production

Chelsea Burnham (University of Tennessee, Knoxville, TN, 37920)

Rose Boll (Oak Ridge National Laboratory, Oak Ridge, TN 37830)

Actinium-225 (^{225}Ac) is becoming more in demand now that it has proven to be successful in alpha radioimmunotherapy, specifically for leukemia. ^{225}Ac is the daughter product of thorium-229 (^{229}Th); it is extracted from thorium supplies at Oak Ridge National Laboratory (ORNL), but due to the limited supply of thorium, the needed quantities of ^{225}Ac cannot be produced. The leukemia treatments are still in trial phase, but in order for them to become widely used, the ^{225}Ac must become readily available. Currently, radium-228 (^{228}Ra) targets are being considered as a production route for ^{229}Th. When a ^{228}Ra target is placed in a high flux of neutrons, it is speculated that ^{229}Th will be produced. The ^{228}Ra recovered during this project will be used to produce research targets to determine if neutron irradiation of ^{228}Ra is an effective method for producing ^{229}Th.

At ORNL, there are several hundred quality-analysis samples in storage from ^{225}Ac production during 1997-2007 which contain ^{228}Ra. ^{228}Ra is the first alpha-decay daughter of ^{232}Th, which is found in a large portion of the ^{229}Th stock currently used for ^{225}Ac production. Every 60 days, the Ac/Ra is separated from the ^{228}Th stock and then further separated using resin columns to strip the Ra from the Ac. Since ^{225}Ra decays to ^{225}Ac with half-life of 14.8 days, a bi-weekly run of the Ra pool separated from the Ac product is also processed to provide smaller batches of ^{225}Ac. The quality analysis samples of the Ra pool taken during processing are typically 5 µL from 1 mL and often contain ^{228}Ra; this is why we are examining these samples.

Gamma ray analysis is used to examine the composition of the samples from ^{225}Ac batches, which have been allowed to decay for at least 5 years. A one-year period provides ample time for the ^{226}Ra to decay away given its half-life of 14.8 days. The samples are combined using cascade rinsing with 8M HNO$_3$ and then cleaned using resin columns. These resin columns consist of MP1 200-400 mesh column, which separates ^{226}Ac from ^{229}Th, and an MP50 100-200 mesh column, which separates ^{226}Ra from ^{228}Ac. The key gamma rays for ^{226}Ac, a tracer for ^{228}Ra, are 338 keV, 911 keV, and 968 keV. Following the assumption that ^{228}Ac is in equilibrium with ^{228}Ra, the activity is calculated with these key gamma energies. The total material recovered, 31.4 ng, is now ready for target production for ^{229}Th research.