The Effect of Substituent Side Chain Length and Solvent Induced Transformations of Unimer to Aggregates in Polythiophene Solutions Experiment

Davis Hu¹, Ilia Ivanov², Kunlun Hong², Monojoy Goswami², Nathan Livesey³

¹ Department of Chemistry, University of Tennessee-Knoxville, TN 37996
² Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Oak Ridge, TN 37830
³ Materials Sciences and Engineering, Tennessee Technical University-Cookeville Cookeville, TN 38505

ABSTRACT

- We study solution unimer plus aggregates (P3HT, P3OT, and P3BT) that are controlled by inducing in solutions
- Good Solvent solubilizes polythiophene
- Bad Solvent induces formation of aggregates
- Control of aggregate formation by volume ratio
- Characterize unimer and aggregates of good/bad solvents by optical spectroscopy of UV-Absorption spectrum and photoluminescent spectrum

EXPERIMENTAL PROCEDURES

- Dissolve P3HT, P3OT, and P3BT in Chloroform (Good Solvent)
- Add control amount of bad solvents (acetone, acetonitrile, dimethylformamide, ethanol, hexane, methanol, and tetrahydrofuran)
- Measure UV-Vis absorption spectrum and photoluminescent spectrum
 - Band Gap
 - HOMO-LUMO (High Occupied Molecular Orbital and Low Unoccupied Molecular Orbital)
 - π-π stacking
- Energy Diagrams:

P3HT IN CHLOROFORM/ACETONE

- Absorbance (λ): 450 nm
- Absorbance (λ): 575 nm

P3OT IN CHLOROFORM/ACETONE

- Absorbance (λ): 450 nm
- Absorbance (λ): 570 nm

P3BT IN CHLOROFORM/ACETONE

- Absorbance (λ): 400 nm
- Absorbance (λ): 570 nm

CONCLUSIONS

- Shift of Absorption peak position from 455 nm for P3BT to 450 nm for P3HT to 455 nm for P3OT
- Maximum of Photoluminescence peak from 570 nm for P3BT down to 575 nm for P3HT to 570 nm for P3OT
- P3HT requires least amount of acetone for aggregate formations
- P3OT requires most amount of acetone for aggregate formations

REFERENCES